PENDUGAAN INTERVAL - 1

Bacaan Selanjutnya ...
Bila nilai parameter dari populasi diduga dengan memakai beberapa nilai statistik q yang berada dalam suatu interval Ã•q < Ã•maka statistik Ãµ disebut Pendugaan Interval. Derajat kepercayaan penduga Ã• disebut koefisien kepercayaan yang ditulis dengan a dimana 0 < a < 1 dan dinyatakan dalam bentuk probabilitas.

dimana 
a disebut koefisien kepercayaan
1-a disebut derajat kepercayaan 
P(Õq < Ã•2) disebut interval kepercayaan

Terbagi atas dua, yaitu :
1. Pendugaan parameter populasi dengan sampel besar, yaitu n  30. 
Dalam hal ini statistik q akan memiliki distribusi normal sehingga dapat ditransformasikan ke normal standar. Dan nilai S tidak akan terlalu besar perbedaannya dengan sampel lainnya. Sehingga dapat didekati dengan variansi populasi.
Dapat didekati dengan :

Penentuan interval kepercayaan parameter memakai suatu nilai Za/2 yang diperoleh dari tabel distribusi normal standar. Berikut beberapa nilai  Za/2 yang sering digunakan.


Derajat Kepercayaan
99,73%
99%
98%
96%
95,4%
95%
90%
80%
68,2%
50%
Za/2
3,0
2,8
2,33
2,05
2,00
1,96
1,645
1,28
1,00
0,6745

Berikut cara menentukan nilai Z tabel :
1. Tabel Distribusi Z Model I
Tabel Model 1 untuk nilai yang diarsir adalah nilai dari (0,5 - a).
  1. Misalkan kita menggunakan interval kepercayaam 95%.
  2. Kita akan menghitung nilai  Za/2 berarti ( 0,95 : 2 = 0,475). 
  3. Lihat nilai dalam tabel Z yang mendekati 0,475.
  4. Diperoleh pada baris 1,9 dan kolom 0,06.
  5. Sehingga diperoleh nilai  Za/2 = 1,96.



2. Tabel Distribusi Z Model II
Misalkan kita menggunakan interval kepercayaam 95%. Perhitungannya berbeda, Tabel Model II nilai yang diarsir adalah 1 - a, sehingga tidak dibagi dua.
  1. Lihat nilai dalam tabel Z yang mendekati 0,95.
  2. Diperoleh pada baris 1,9 dan kolom 0,06.
  3. Sehingga diperoleh nilai  Za/2 = 1,96.



Tentu bisa dicoba untuk nilai Z lainnya.

2. Pendugaan parameter dengan sampel kecil, yaitu n < 30
Dalam hal ini statistik q akan memiliki distribusi normal sehingga dapat ditransformasikan ke normal standar. Penentuan interval kepercayaan parameter mmakai suatu nilai Za/2 yang diperoleh dari tabel distribusi normal standar. Berikut beberapa nilai  Za/2 yang sering digunakan. Nilai   S cukup besar berfluktuasi, sehingga tidak dapat didekati dengan normal standar. Hal ini didekati dengan distribusi Student-T 
Untuk menentukan nilai t-tabel, 
  1. Misalkan akan dicari nilai t-tabel untuk a = 0,05 dengan ukuran sampel n=15.
  2. Tentukan nilai derajat bebas df = 15 - 1 = 14
  3. Lihat baris df=14 dan kolom 0,05, sehingga diperoleh nilai t-tabel = 1,761. 


Tentu bisa dicoba untuk nilai t lainnya.

Berikut perhitungan pendugaan Interval untuk ukuran sampel besar. Sehingga digunakan nilai Za/2.

Sedangkan untuk ukuran sampel kecil, maka Za/2 ditukar dengan nilai t-tabel atau t(a;df).
Untuk formula di atas digunakan jika ukuran populasi tidak terbatas, sedangkan jika ukuran populasi terbatas makan nilai standar deviasi untuk setiap parameter yang diduga harus dikali dengan faktor koreksi :

by MEYF ^_^