ANALISIS VARIANS DUA ARAH - TANPA INTERAKSI (TWO WAY-ANOVA)

Bacaan Selanjutnya ...
Sebelumnya kita sudah membahas mengenai uji analisis ragam satu arah yaitu satu perbedaan kriteria. Biasanya ANOVA digunakan terutama pada rancangan percobaan (Design of Experiment - DOE) yang memiliki implikasi pengambilan keputusan untuk menggunakan teknlogi baru, prosedur-prosedur baru ataupun kebijakan-kebijakan baru. (Nanti kita akan bahas mengenai DOE dan aplikasinya pada MINITAB). 

Sebagai contoh dalam perusahaan industri yang akan merancang produk baru, tentu dibutuhkan beberapa kali percobaan sehingga menghasilkan suatu produk baru yang memiliki kualitas yang baik dn memberikan keuntungan pada perusahaan. Biasanya dalam Six Sigma menggunakan ANOVA untuk DOE. Pada prinsipnya pemakaian ANOVA atau sering disebut uji F yaitu dalam pengujian hipotesis dimana mean dari kelompok bagian sangat berbeda maka variasi kombinasi dari seluruh kelompok jauh lebih besar dari variansi masing-masing kelompok bagian. 

Berikut kita akan lanjutkan analisis ragam dua arah. Pada analisis ragam dua arah yaitu membandingkan perbedaan rata-rata antara kelompok yang telah dibagi dua variabel independen (disebut faktor). ANOVA dua arah terbagi atas dua yaitu ANOVA dua arah dengan interaksi dan ANOVA dua arah tanpa interaksi. pengujian ANOVA dua arah tanpa interaksi merupakan pengujian hipotesis beda tiga rata-rara atau lebih dengan dua faktor yang berpengaruh dan interaksi antara kedua faktor tersebut ditiadakan. Tujuannya adalah untuk menguji apakah ada pengaruh dan berbagai kriteria yang diuji terhadap hasil yang diinginkan. Atau bunyi hipotesisnya adalah tidak ada perbedaan k mean (k>2) pada perlakuan pertama; tidak ada perbedaan k mean (k>2) pada perlakuan kedua; dan tidak ada efek interaksi antara perlakuan pertama dan kedua.

Adapun contoh kasus ANOVA dua arah adalah :
  1. Ingin mengetahui pengaruh dari tingkat harga dan tingkat distribusi terhadap keinginan pelanggan membeli barang A (harga : sangat mahal, mahal, murah dan distribusi: sangat lancar, lancar dan tidak lancar).
  2. Apakah tingkat pendidikan : bukan sarjana, sarjana muda dan sarjana serta tingkat umur (<35, 35-55, >55) mempengaruhi tingkat konsumsi sejenis minuman tertentu?
Adapun langkah-langkah yang dapat kita lakukan adalah :


1. Uji asumsi data
kenormalan data, independen data dan homoskedastisitas.Sampel berasal dari kelompok yang independen berarti pada saat pengambilan sampel yang dilakukan secara acak terhadap beberapa kelompok dengan nilai suatu kelompok tidak bergantung pada nilai dari kelompok lainnya. Data masing-masing kelompok harus berdistribusi normal dan variansi antar kelompok harus homogen dapat kita uji dengan menggunakan uji kenormalan dan uji homoskedastisitas (akan dibahas pada artikel berikutnya). Jika asumsi tidak dipenuhi maka data harus ditransformasi dan apabila masih tidak memenuhi maka ganti dengan uji nonparametrik. 

2. Membuat tabel pengamatan. Jika kita punya kriteria pertama disebut sebagai blok sebanyak r dan kriteria kedua disebut sebagai perlakuan sebanyak k, maka dapat kita susun tabel sebagai berikut :
Tabel Pengamatan
3. Melakukan perhitungan. Dalam hal ini perhitungan hampir sama dengan ANOVA satu arah.
yaitu menghitung berbagai jumlah kuadrat, yaitu :

JKT = JKB + JKK + JKG

Dimana:
Jumlah Kuadrat Total : 
 Jumlah Kuadrat Kolom
 Jumlah Kuadrat Baris
 Jumlah Kuadrat Galat (error)

4. Merumuskan hipotesis
Dalam ANOVA dua arah terdapat dua kasus yang akan diuji : mean semua perlakuan (kolom) dan mean semua blok (baris).
a. Membandingkan mean semua perlakuan (kolom)
Hipotesis Uji  :
Ho : Semua rata-rata perlakuan (kolom) adalah sama
Ha : Ada rata-rata perlakuan (kolom) yang berbeda

b. Membandingkan mean semua blok (baris)
Hipotesis Uji :
Ho : Semua rata-rata blok (baris) adalah sama
Ha : Ada rata-rata blok (baris) yang berbeda

5. Menentukan taraf signifikansi
Biasanya kita menggunakan alpha 5% yang artinya terdapat sekitar 5 dari 100 peluang bahwa kita akan menolak hipotesis yang seharusnya kita terima atau melakukan kesalahan.

6. Membuat hasil perhitungan ke dalam tabel ANOVA dan menentukan F tabel
Tabel ANOVA










7. Menentukan wilayah kritis atau kriteria pengujian
Daerah kritis disesuaikan dengan F-tabel dan derajat bebas. Untuk menentukan derajat bebas terdiri dari :
  • df baris = (r-1)
  • df kolom = (k-1)
  • df galat = (r-1)(k-1)
  • df total = (rk-1)
Mencari F-tabel terbagi atas dua, yaitu :
  • Rata-rata baris = F-tabel dengan (alpha; df baris; df galat)
  • Rata-rata kolom = F-tabel dengan (alpha; df kolom; df galat)
Mencari wilayah kritis atau daerah pengujian yaitu mencari batas wilayah penolakan Ho atau penerimaan Ho, yaitu :
Ho ditolak jika F-hitung > F-tabel
Wilayah Kritis F









8. Keputusan
9. Membuat kesimpulan 


Kesimpulan disesuaikan dengan hipotesis.

Artikel berikutnya akan kita bahas mengenai contoh ANOVA dua arah tanpa interaksi.

---^_^---


Reference:
- Mendenhall, Sincinch. 1996. A Second Course In Statistics. Regression Analysis. Fifth Edition. Prentice Hall Internatiomal Edition. 
- Priyatno, Duwi. 2010. Paham Analisa Statistik Data dengan SPSS. Mediakom. Yogyakarta.
- Sugiyono. 2008. Metode Penelitian Bisnis. Alfabeta. Bandung.
- Sugiyono. 2009. Metode Penelitian Kuantitatif Kualitatif dan R & B. Bandung.
- Sugiyono, 2008. Statistik Nonparametris untuk Penelitian. Alfabeta. Bandung.
-Supranto, J. 2004. Analisis Multivariat : Arti dan Interpretasi. Rineka Cipta. Jakarta.
-Walpole, Ronald E. 1992. Pengantar Statistika Edisi ke-3. PT Gramedia Pustaka Utama. Jakarta.